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ABSTRACT

In many applications one meets systems of differential equations which

consist of first-order hyperbolic and second-order parabolic subsystems which

are nonlinearly coupled. These arise, for instance, in the modeling of motion

of a compressible, viscous heat conducting fluid, in radiation hydrodynamics,

and in the theory of motion of viscoelastic materials . The relevant equations

are presented ,ea ir--.:

The results of this work are local time existence and uniqueness theorems

for initial-boundary value problems, including cases with free boundaries, for

such systems . The results given are for the case of one space dimension. The

methods used involve introducing appropriate variables, the method of

iteration, a priori estimation and fixed point theorems. (
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BOUNDARY VALUE PROBLEMS AND FREE BOUNDARY PROBLEMS
FOR QUASILINEAR HYPERBOLIC-PARABOLIC COUPLED SYSTSMS

Ta-tsien Li*, Wen-tzu Yu**, and We-shM Shen***

* 0 , C[' CJ] ION.

1,eLo wc hindle with so-called quasilinear hyperbolic-parabolic coupled systems which

:.tx occur in applications. Roughly speaking, in this kind of system a part of equations

formilate d first order quasilinear hyperbolic system with respect to certain unknown

t ns I - {u ".. n , another part of equations a second order quasilinear parabolic

_4ystn di-h respect to the remainder of unknown functions v - {v ,...,v), and these two

, rts are nonlinearly coupled each other. For instance, the system of motion for a

co~n ,.i'e viscous, heat-conductive fluid 
1
, the system of radfation hydrodynamics

the ,'ste5r of motion of viscoelastic materials 3 ] 
etc. are of this kind.

Fhc initial value problem with smooth initial data has been studied by several

a v rs. !F" example, for the system of motion for a compressible viscous, heat-conductive

fluid i,, 3-dimnsional case, J. Nash
[4 ] 

and N. Iteya5] E6] have proved the existence and

tuiiqueness of the local smooth solution. Recently, A. Mateumara &nd T. Nishid. (
7] 141

i., provc,! the corresponding global existence theorem for the small initial data.

the quasilinear hyperbolic-parabolic coupled system, the boundary value problems,

., ,c'Ally the free boundary problems are more important in applications, because the

a--r < -, concerned with determining the corresponding discontinuous solution which can

, . instance, the behaviour of a fluid containing a radiation shock in radiation

xi coiynamics. but for the boundary value problems, especially for the free boundary

:n_, % can only find certain results in some special cases even for one-dimensional
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case (for instance, A. Tani
[8 ] 

has discussed the mixed initial-boundary value problems for

the system of compressible viscous, heat-conductive fluids in a cylinderical domain with a

special Dirichlet boundary condition: the velocity u - 0 and the absolute temperature

T - T (tx); A. V. Kazhikhov and V. V. ShelukhinE
9
3 have considered the corresponding

one-dimensional initial-boundary value 1 blem with the boundary data:

u(t,0) = u(t,1) - Tx(t,0) = Tx(t,l) - 0, t ) 0;

Moreover, A Tani
[1 5 ] 

has also studied a free boundary value problem for compressible

viscous fluid motion etc.). So it is worthwhile to carry out a systematic research on this

subject.

In what follows we shall concentrate our attention on the boundary value problems and

the free boundary problems for the following general types of quasilinear hyperbolic-

parabolic coupled systems in one-dimensional case:

n au a
Ctj(txuv)(rt* X(t'xuvvx) jl) - IJt(t'xuvv x )  t - 1,...,n) (1.1)

i-i

av a2v
- a(t,x,u,ux,v,v x) - b(t,x,u,uxv,vx ) (1.2)ax

2

where v - (v1 ,...,Vm)T is a vector function and a is a diagonal matrix:

a - diag(a1,...,a). On the domain under consideration, we suppose that

an detICtjI 
# 

0

~and

at > 0 (A - 1,...,m)

In this system, (1.1) is hyperbolic with respect to u - (u 1 .  un)T (under the
dx

charActeristic form with the characteristic directions = A (L = 1,...,n)), (1.2) is

parabolic with respect to v and (1.1), (1.2) are nonlinearly coupled each other.

-2-
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Type II.

nau au
i C Cz(t~x.U.v)(rt + A(tlxlu,v,v ) ) -

(1.3)

~(tfx~u~v)(Lv + A (t,X#,V*VC ) + 1J (t,x,u~v~vx) ( ,. n

IV 32v.r - a(t,xu,V,V b(t,x,u,VVx) , (1.4)

in which the coefficients a and b don't depend on ux, but on the right-hand side of

(1.3) there is an additional term which denotes the directional derivative of v along the

characteristic direction 1! -A"

Our goal is to discuss various kinds of boundary value problems and of free boundary

problems for these systems in a class of smooth functions or piecewise smooth functions and

give a condition of local solvability in order to obtain the corresponding existence and

uniqueness theorem. The results obtained by us can be applied to many practical cases and

imply an affirmative answer for a conjecture given by C. M. Dafermos
[3] 

about the

incomplete parabolic damping.

2. EXAMPLES.

1. System of motion for a compressible viscous, heat-conductive fluid.

In one-dimensional case the system can be written as follows

ap ap a+ U x--P . (2.1)

au, uu 1J , au) +f(2.2)

IT+u.--j~ x I.I a AT)+P (u) +P P au (2.3)

Tt T T x PTT 1 T x

where t , time, x spatial coordinate, P : density (P > 0), u 3 velocity,

-3-
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p : pressure, T 3 absolute temperature (T > 0), S : entropy, P : coefficient of

viscosity (P ) 0), A : coefficient of heat conduction (A > 0), f : outer force which is

a given function of (t,x), and pS,IP,k are qiven functions of (PT).

It is easy to see that in this coupled system (2.1) is a single first order

(hyperbolic) equation for 0, (2.2), (2.3) is a second order parabolic system for (u,T).

So, this system is of the following form of quasilinear hyperbolic-parabolic coupled

systems:

nau au()

1 .j .-(tX,u,v)(t
1 + AL(t#x*u,v, ),uv,,) (I ......

av
in which X. and U are affine functions of r -v, a doesn't depend on but b

does. Obviously, () is a special case of the system of type (I).

2. System of radiation hydrodynancis.

In order to determine the motion of a fluid with very high temperature we have to

consider the hydrodynamics in the presence of a radiation field. For the one-dimensional

unsteady flow, under the diffusion approximation the coresponding system of radiation

hydrodynamics can be written in Lagrangian representation as the following conservation

law:

3T au
Tt- x- 0

au + (p 
+ 
p

)

2 3:
a(e + u- + TVF) a{u(p + - DP

at ax

in which

T - : specific volume,

p - RPT : pressure, R - constant > 0,

-4-



a T3 40

P 
=  

3 : light pressure, a - c light speed, 0 - constant > 0,

e inner energy, Y adiabatic exponent,

Ev = 3pv aT4 : radiation energy,

D C -, E AT
a 

(A, 0 > 0 constants): Rosseland mean free path.
3

Taking (u,P,T) as unknown functions, the system can be written as

/Rr('+ ,,j-r a') + P(3U + ,g/ u =" -P(RP 16 3 (24
at Tx +16 T ST

x 1 o 3 ) 3T

a x t ry3 c (2.5

+ 160 31 T - 16A0 3+a a2T 16AU 3+a ap T

Y-1 cP St 3 T x 2  
T

(2.6)16A,_ .. ( a )2 +, "- 4 + P R ) -u 0 •
- (3 + a)PT2+a (160 T4 pmT) Mu

It is clear that (2.6) is a single second order parabolic equation for T, and (2.4),

(2.5) is a first order quasilinear hyperbolic system for P and u (with the

characteristic directions AM -A - *P ), then (2.4)-(2.6) is also a special case ofcharcterstlcdiretio t 1,2

system (*).

3. System of one-dimensional viscoelastic materials of the rate type

u t - v x  0 ,

(2.7)

vt + p(i)x - Vxx

and system of one-dimensional thermoviscoelastic materials

-v = 0,

vt + P(U'e)x Vxx 
(2.8)

2
(e(u,O) + !--I + [p(u)v]x - vVx]x 6xx (e > 0)

2 V



are both a single first order (hyperbolic) equation for u coupled by a parabolic equation

or system respectively.

System of one-dimensional thermoelastic materials

Ut -V = 0 ,

v + p(u,O) x - 0 , (p < 0)
(2.9)

2
[e(u,

8
) + !-It + [p(uO)Vlx -ex (e > 0)

2 x~~(~0

is a hyperbolic system for u and v coupled by a single parabolic equation for e.

These systems are of the form (*).

4. System of a model of nerve impulse propagation

ut - r(x)uxx + Fo(u,w)

(2.10)
wt - G(u,w)

and system of reaction-diffusion

au a 
2

u
" -2 + f(uv);x2

(2.11)

av
-g(u,v)

are obviously of 
the form (*).

S. Moreover, certain higher order equations can be also reduced to a hyperbolic-

parabolic coupled system, for instance, we consider the following problem (see J. M.

Greenberg[
10

, J. M. Greenberg, R. C. MacCemy and V. J. Mizel
[111

, also see J. L.

Lions
[ 12 ] 

):

2u- (u) 
2 u 0

2u , 0 < < , t > 0 (A > 0)

at 2  
Tx a 2 

- -
2

u(O,t) - u(1.t) - 0 , (2.12)

u(x,O) - uo(x), 3 (x,O) = U1 (X) .

-6-
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Taking

au au

as new unknown functions, this problem is equivalent to the following one

au 3 w 3v v w I2L~ ~ E(w)

v(Ot) = v(1,t) - 0 , (2.13)

U(xO) - u0 (x), w(x,0) - u%(x), v(xO) - u(W

in which the first two equations formulate a hyperbolic system for u and w and the last

one is parabolic for v, so this system is of the form (*), too.

Now we shall point out that in many cases by means of adding certain new unknown

functions some problems for system (*) can be equivalently reduced to a corresponding

problem for the system of type (II), for which the existence and uniqueness theorem seems

somewhat easier to prove.

Example I: Consider Cauchy problem:

n au au

I~ C4 1(t'x'uv)(- + A(t,x,u,v,v ) )- P(t,xu,v,v), ( 1,...,n) , (2.14)
i-I

av - (2t.15)3
2

(t,x,UUxv) 2L - b(t,x,uUx,,v x )  (2.15)

t - 0: u - O(x), v - O(x) , (2.16)

av.
in which AI and PI(I - 1,...,n) are affine functions of r T Set

wj (j - 1,..., n)

differentiating (2.14) with respect to x and using equation (2.15), we can prove that

u,v and w satisfy the following Cauchy problem

V

& -,

h



n 3
uau

L J(t,X,UVJ9 + A (t,X,U,V,V ) TI) - &At(t,Xe,v",Vx)
j 

x1 Ctj(txuv)(3.,i + AIr
1

,,V ) ZX~(t'x~u'w~v)(Tt I T.)

-i

+ 1i(txu,wv,vx)o  (t . ,...,n) , (2.17)

- a(t,x,u,v,v) 22 - b(t,x,u,w,v,v )

t - 0 : u - W(x), v - OI(x), v - *(x)

in which

Z ,t,x,U,,v) - - C ) -wj/act,xu,w~v., (r denote. T-

n OU t v n (a I2 na 3-
k 1 3 ; TV -1k- I Fk

-HI T- k Iwk +1 )b jE
J.1 k-1 uk k-I

are determined by the coefficients and (Cjk) is the inverse matrix of (CJ).

Conversely, if (u,v,w) is the solution of problem (2.17), then we can prove that

(u,v) i the solution of the original problem (2.14)-(2.16) and w - au

Example 21 Taking
awSx

as an unknown function, problem (2.13) is equivalent to the following problem of type (11):

-8-
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au 9w av as 1 v 02vT- v, 3 T TX- t IrT a - (,), -c)- -,2"o

v(O,t) - v(1,t) -0 , (2.18)

u(x,O) - u 0X), w(x,O) - U(x), s(x,0) - U;(x), v(x,O) - U X)

Here, we can find out that on the right-hand side of the third equation, there is a

directional derivative of v along the characteristic direction 0 and that

a , b - E(w)s don't depend on 
(1, 3, s).

Oax0a

Hence, in order to explain our results and methods, in what follows we shall take as

an example the second initial-boundary value problem for the system of type (1I). All

other kinds of problems (such as the Cauchy problem, the first initial-boundary value

problem, the initial-boundary value problem with interface etc.) can be discussed in a

similar way and the similar results for the system of type (I) hold true, too.

3. SECOND INITIAL-BOUNDARY VALUE PROBLEMS.

On a rectangular domain

R(d) - {lt,xllO -C t 4 8, 0 -C x 4 1} (3.1)

0 1 x

we consider tl. second initial-boundary value problem for the system of type (II):

n Du a

S+(t,x,nv) (txuvv ) - C(tX.uV)( + Xu(tx~uvv)T)
i-1

(3.2)
+ JLt(t,x,u,v,vx), (4 =1...,n)

v a2v
av a(txuVvx) b(txuVvx) " (3.3)

Without loss of generality, the initial conditions may be written as

t 0 : u v 0 (3.4)

-9-

""#'2 /



Moreover we can suppose that

a(0,x,0,0,0) - I(3.5)

(Otherwise, use the transformation of independent variables

x d&

0 .'a(o, ,o0,0)

and that

b(O,x,0,0,0) B 0 (3.6)

Citj(O ' x '° 'o) E 8 Ij { 1 (3.7)

(to this end, it is sufficient to introduce the transformation of unknown functions

v - v - tb(O,x,0,0,0)

n

uI- j C tj(0,x,D,O)u j

Under the hypothesis (3.7), the u. (i - 1,...,n) are called the diagonal variables.

The boundary conditions are as follows:

on x - , ur - G r(tuv) (r - 1,...,h h C n) , (3.8)

avT--_ . F+(t,u,v) 1 (3.9)

on x - 0, u - G(t,u,v) (6 - k + 1,...,n; k > 0) , (3.10)

av
- - F (t,u,v) . (3.11)

Here the boundary conditions for v are of Neumann type, so this problem is called the

second initial-boundary value problem.

We assume that the following conditions are satisfied:

-10-
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I

(1). Conditions of orientability,

)r(0,1,0,0,0) < 0, A (0,1•,00,0) > 0 (r 1....h ) (3.12)

A(o,0,0,0,o) < 0, A (0,0,0,0,0) > 0 (,(3.13)

An usual, the characteristic directions are called departing characteristic directions on

the boundary, if as long as time increases, they go towards the interior of the domain.

t

0 X

Thus, on the boundary, the number of boundary conditions for u is equal to the number of

departing characteristic directions. For example, on x - I the number of boundary

conditions for u is equal to h, the number which appears in (3.12).

(2) Conditions of comatibility:

G r(0,00) - 0, G a(0,0,0) - 0 (r - 1,...,hr A - k + 1,...,n) , (3.14)

G n 
3
G

Tt (0,0,0) + 1 3-1 r (0,0,0)UJ(0,1'0,0,0) r(000)

(3.15)

aG. n ad

(0,o,0) j r (0,0,0)pJ(0,o00,00) - 10,oo,) I

(r- 1,.**,hi 1k + 1,...,n)

F t(0,0,0) - 0 . (3.16)

(3) Conditions of smoothness: the coefficients of the system and the boundary conditions

are suitably smooth. For simplicity, we omit the detail here.

-1.1-
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By means of certain a priori estimations for the solutions of the heat equation and of

the linear hyperbolic system, using an iteration method and the Leray-Schauder fixed point

theorem, we have proved the following

Theorem: Under the preceding hypotheses, suppose further that the following

conditions are satisfied:

a
3
G

det1r, - Tur (0,0,0)j * 0 (r,r' - 1,...,h)
r

36 
(3.17)

detie@ - y- (0,0,0)1 * 0 (i,i' - k + 1,...,n)

i.e. the boundary conditions may be rewritten as

on x = 1, ur = Hr(t,'uev) (r - 1,...,hl a = h + 1,...,n)

(3.18)

av
x F+(t,u,v) ,

on x = 0, u - Iidt,u..v) (i - 1,...,k; i - k + 1,...,n)

(3.19)
3w

-v . F (t,u,v)

then, the second initial-boundary value problem admits a unique local classical solution on

R(S) where 8 > 0 is suitably small.

4. IDEAS OF THE PROOF.

1. A priori estimations for the solutions of the second initial-boundary value

problem of heat equations:

av a
2
v

- T + b(t,x))x

t 0 v 0 , (4.1)

av av

x - 0 : - *1(t)a x - 1 s x "2

Suppose that on the domain R(
5

0 ), 0 (t) 6 C
1
, *i(0) - 0 (1 = 1,2) and b(t,x) e C

2

(0 < a < 1), where

-12-
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C = Holder space of functions f such that f is H6lder continuous with respect

to t and to x with the exponents B and a respectively (0 < 1, B 1),

then it is well knovn 
1 3] that problem (4.1) admits a unique classical solution v on

R( 0) with
t I t

v(tx) f f H(t,x;T,C)b(T,C)dCdT + f N(t,.xuT'l)2 (T)dT

0 0 0

t

- f N(txlT,0)sp (T)dT #
0

IVf t f1 N~~r t NHltx;Tfl)
X (t,x) - fT a.(td f) a P2 (dd

0 0 0

- ft 3
N(t #x Tf0) Vl(T)dT (4.2)

0

2 t 1 t
a v (t,x! j a2N (t,xjT,C)(b(T,C) - b(T,x))dCdT + f N(t,X;TI) (TldT
ax 0 ax 0

t
- f N(tx;T,0I),(T)dT

0

Vt 1 N1
V (t,x " f I (t,XjT,C)(b(T,C) - b(t,C))dCdT + f N(tx;0,&)b(tC)dC

0 0 0

t t
+ f Nlt,x;T,1), 2 (T)dT - ?l(txIT,0) llTldT

0 0
in which

d

(T) = (T ) (i - 1,2)

N(tx;TC) - [G0 (tx;T,2n + C) + G0(tx;T,2n - 0)] (4.3)

is the Neumann function for the second initial-boundary value problem of the heat equation

and 2(x - C12

______ 4(t - T)(4)
G0 (t,XIT,C) - (t T)

2r'w(t - T)

is the fundamental solution of the heat equation.

-13-
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II | I

Moreover, on R(S ) v e E2 +a (0 a < 1), where

-2 ff 2 f 3
2
f - '

4

{ff , T. , 2f continuous, x e c , , xe

"x

On R(
8
), V 8, 0 < 6 ( -d, introduce the following norma:

Ilfl sup If(tx)I
(t,x) e R(S)

If(t 1,x)-f(t 2,x)I Q If(t,xI)-f(t,x2) I
H t] - sup , H (U - cup , (4.6)

(t.,x),(t ,x) It -t2
I  

(t,x 1),t,x2 ) iXl-XIa
1
e R(S)

2  
12 R(8)

z

a

H a f] - H 2 f) + H (f] (0 < 0, B(1
t

Using the preceding expressions and the property of the fundamental solution, after

a long calculation we have obtained the following three a priori estimations on

R(8) V 8, 0 < 6 80:

.. lvi l v 3 + v (8/2 ,bI + Ilt) or vi 4 C(/2 bi + 8,,), (4.7)

2". lvi le vi + a- +l 2 V +'2 av
idf ax 2 t

a (4.8)

C C2(lbl + 8Hxab] + 8/21li) 10, lot + i1.))

1+0 2
v -2  3  

a v av
P. vl- 1 t 

1  
+ H [] + H [ C3 (Ibl + H (b) + 1I011 (4.9)

in which C1 (1 - 1,2,3) signify constants depending only on 80.

2. A priori estimations for the solutions of the following initial-boundary value

problem of first order linear hyperbolic systems;

-14-
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n au. au. 3v (t

-1t(t~x)(U. +t(tx) 7.1) = (tx) (3 + A (tx) .) ,

t * 0 u 0 ,

(4.10)

n
x - 1 : (tl)u * (t) (r - 1,... h ; h C n)

r)1 j
n#3-1

x 0 C. (t,0)uj - *t) (i k + I....ni k ) 0)sj - .

in which v - v(t,x) is a given C
1 

function and we suppose that on R(
8
0

detICt (tx)I * 0 (4.11)

and

CIJ(O'x) - 8 . (4.12)

We suppose further that the following conditions are satisfied:

1. Conditions of orientabilitys

on x - 1, Ar(t,1) < 0, A (t,1) ) 0 (r - 1,...,h; a - h + 1,...,n)

(4.13)
on x - 0, A(t,O) 4 0, A.(t,O) > 0 ( - 1,...,k; s - k + 1,...,n)

20. Conditions of compatibilitys

*riO) - 0, i;(0) -,

(
3
v (0,1) + Ar(0,1) av (0,1)) + r(01) ir

(0 )"  (7 1,...,h ) (4.14)

(0,1 0,1)0- r' a - k + 1

(00('(0,0) + A (0,0) (0,0)) + M (O,0) - j(0)

.3 Conditions of smoothness.

Usually, for the initial-boundary value problem of first order linear hyperbolic

systems, the term on the right-hand side of equationr should be assumed to be continuous as

well as its first derivative with respect to x. In the present case, since v(t,x) is

-15-
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3v av

a C1  function, + xt ,x) T- is only continuous. But, noticing that it in theTt'dx

directional derivative of v along the characteristic curve A "t(tx). we can

integrate by parts this term CZ(F + A, T-) when we integrate the system along the

characteristic curve, then we can prove as usual that problem (4.10) admits a unique

1 1+0 1 af af 0,0
classical solution u on R(6 ) with u S c or u e C +

- (flf e C1 , , T' e C
0 T

under the different hypotheses of smoothness respectively.

Introduce the following classes of functions:

r ~ ~ 5XIC.1U

1 _,__ _

00

rt (4.16)

lulI6 -, 'u' + NI(T  +H I ,

* * *au Ba Bau
lul'1+1 lul 1 + [CT] +£H( ] + , CI

3A it am'I

where Nt[n] - E... (f] (4.17)

and the constant 0 will be suitably chosen later on. By means of the integral

relaionssatsfie by ugt,x an lug + au au

lug* - lu + aul aul

relatons atisied y u~~x) nd , ' respectively, after a long calculation we

have established three a priori estimations on R(
6
) V 60 • 4 > 0 as follow.,

-16-
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10 lul 4 (1 + K 16)101 + (H0 + K 16) Ivi + K 6I1Il (4.18)

in which constant X, depends only on the norm ir I on R(d ) and

H0 - 2 sup I1(t,x)l
U1 ,... ,n

(t,x) 0 R(
6

01

P. lul 1 (1 + d0 C + X2 8 )t|l + (K0 + K26)(t + 1r7il (4.19)

provided that Allpi are H6lder continuous with respect to t with the exponent 3, in

which do = mn {-Ar(0,1),A (0,0)), K0 depends only on the norm I 01 on R(60

k+l<i8n

and K2 depends only on the norm IF2 I and Ocr 0 ] on R(0

30. lul * 4 (1 + 2 d-1 + d; 2+ G )H 0(] + (K +K 3 )(1 + l+ l+) (4.20)
1+5 0 0o C 28 t X2 + 36( +I + V1+3

provided that all the functions in r2 are H6lder continuous with respect to t and x

with the exponent 0, where K3 depends only on Ir2 1 and H[r 2 ] on R(60).

3. Introduce the following sets of functions on R(6):

1.0) - {(u,v)lu e c1, c v * C1, -2 C , u(0,x) - vCO,x) -0)Dx 
2

-(41) = C , v * C
-2+ , 

u(O,x) - v(Ox) - 0,
(4.21)

au 3V
(Ox)- J(O0.x.O..0). ' (O.X)= O a

(5 ) - I(u ,v )I (u ,v ) 6 j1( ), l i1 4 A0, lu l ( A 1, lul4 A A2 '

lu12

Iv1 C Bo, Ivl 1 4 si V1 l2 4 B 2 1

-17-



where Aj.B i 1 0,1,2) are positive constants to be chosen later vith

A 0 4A I ' 2 ' .'

For any (U,;) 6 1 1(8), according to the preceding points we can define an iterative

operator Cu,v) T(;~,;) by means of the following linear problem

2+ A

- - , ;,a + atx,;J-
x ax

t 03 u 0, V 0 ,(4.22)

n
x =1: j C t,,ut,1),v~t,1)u - r (t'u~t,1),v~t,1))

n
+ !,(C" (t,1,(t,1),;(t,) - 6 j)u (t,) 29 #,t), r -1,.h

a,

n

x Or J1 C(t,0,ut);(, '))j ait'(t0),v(t,0))

+ J! C ij (t.0.u(t.0).(t.0)) - 8 5UCt.o) #I91 t). k =...,n

a,
Cx t,0) - P-(t,ut,0),,Ct,0) S V Ct)

For the time being, we suppose that

n 3G n 3a
I ry (0,(00)1 < I* I 1 (0,0,0)1 <1 *(4.23)

Tu--

J I i J.



Then, using the preceding a priori estimations, we can choose a small constant C > 0 and

constants 0 "A11A2, B0,BtB2 such that the operator T maps 1(6) into itself, if

6 > 0 is suitably small. Because 1(6) is a nonempty convex, closed, compact subset of

the Banach space 1.(6) provided the norm

I(uv)I* i gUll + *v|1 + 
2
V

ax2

and T is a continuous mapping from 1(6) into itself in this space, acoe 
-
_ - -. Leray-

Schauder fixed point theorem this operator (uv) = T(uv) has a fixed or.t' i,v- which

is the solution of the original quasilinear problem on R(6). The . - e

solution can be proved as usual by means of the corresponding a priori .. ': "n.

4. In order to finish the proof, we have to point out that tt' ntraci ion condition

(4.23) can be realized under hypothesis (3.17). In fact, under this hypothesis the

boundary conditions can be written as (3.18), (3.19). Then, intr-.;ducing a transformation

of unknown functions

ui (x)ui ( 1,...,n)

and multiplying the X-th equation of (3.2) by IIx), where

IiCx) - six + bi(1 - x)

with a. = bj - 1, ar.- b, > 0 small enough, it is easy to see that the problem for

(u,v) satisfies the corresponding contraction condition (4.23) an well as all the

hypothesis of the theorem, so the theorem is proved.

5. SECOND FREE BOUNDARY PROBLEMS.

On a domain

t xX(t)

R(6) - {(t,x)I0 4 t 4 8, 0 IC x 4 x(t),
/ / )x

where x - x(t) is an unknown boundary curve, we consider the following second initial-

boundary value problem with free boundaries (for simplicity, called the second free

boundary problem):

-19-
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~ 2 (t~x~u~v)(,!± + (t,X,u,,vx)) . 2(t,X,uV)(1 + (tt,x,, v)

i+ !j tjt! ! ! nV

:1

+ 2 b(t.xu,Vv ) (2 1,...,n) ,

- a(txuVvx)-- b(tx'u'V'Vx) , (5.1)

ax

tm~z umv0O

x - 0: u. G-tuw) ( - k + 1,... ,nx (r 0)U 5

av

x - x(t): u - G (t,xeu,v) (r - lI...,hg h ( n)r r

av
=xx F+(t~x,u,v)

and

-D~t,x,u,V,Vx), x(O) - I
dt x

which is an ordinary equation to determine the free boundary x - x(t) in the procedure of

solution.

This kind of problem can be met in the motion of the fluid with radiation shocks.

We assume once more that the corresponding conditions of orientability, of

compatibiity and of smoothness hold true. For instances we assume

A r(0,1,0,0,0) < D(0,1,0,0,0), A (0,1,0,0,0) > D(0,1,0,0,0) ,( .
(5.2)

Ao,0,0oO) < 0, A.(0,0,0,0,0) ) 0

(r = I,...,h, 9 - h + ko..ng r - 1,...,k, = k +

Here the essential difficulty consists in the presence of the free boundary curve, but,

using the transformation of independent variables

t x (5.3)

the domain R(8) is reduced to the domain

-20-



-0 G

with fixed boundaries, now the coefficients of the system and the boundary conditions

depend on x(t) such that they are certain operators of (u,V). That is to say, we obtain
a second initial-boundary value problem in functional form as follows (where (tE) is

aqain replaced by (t,x))s

Cz C(t~xIu~v)(yI + AX(t,xIu,v)j;i) - CI(t,xlu,v)(rt +A

+ Il
(t 'x lu ,v )  

(V"1,.,n

- a(t,xlu,v) - - b(t,xlu,v)3x 
2

t~s uv-O(5.4)
t -OS u =v - 0,(54

x I: ur G r(tluv)

av
3- F+(tlu,v) ,

x- 0: u. - 6.(tlu,v)

3V r_(tiu,v,

where

-21-
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CIJ(t,xlu,v) -CIJ(t,x(t)x,u,v)

A (t,xlu,v) (k (l('~xu v ~! xt -X.t)x)/x(t)

Cjt(t'xIu'v) - Y±tex(t)x'u'v)

UII(t'xtu'v) - uLt(t,2c(t)x,U,v,

a(t,xlu,v) - a(t,x(t)Xc,U,V, W . x(t)/X(t

b(t,xlu,v) - b(t,X(t)X,u*v, Dv . I xItMX av

G (tlu,v) - G (t,x(t),u,v)
r r

a (tju'v) - G(t'u'v) *(5.6)

F +(tlu'v) - T (t.x(t).u.v)Ix(t)

F_(tlu,v) - F-(t,u,v)lx(t)

and x -x(t) is defined by

axt ~~~)ut,)vtI.R (~) (5.7)

,c(0) 1.I

tFor the aecond initial-boundary value problem in functional fore we can prove that the

situation is similar to the aecond initial-boundary value problem, then we can obtain the

corresponding condition of solvability for the original second free boundary problem aa

followas:dt8.-*0 ~ i-I

fi U (0,0,0)1 *0 .. n

(58

3G
detl5.- r (0,1,0,0)1 0 0 (r,i - ,..h

r

-22-



i.e. the boundary conditions can be written as

x - OS u. - (t~ufv) (i-1.. g~=k+ 1..

av
T- F (t'u'v)

(5.9)

x - 1: u r H r(t'x'usv) (r -,..hga-h + 1,... ,n)

6. VARIOUS REMARKS.

1. in the came where the given boundary x -x(t) is the k-th characteristic curve,

we can consider x - x(t) as a free boundary with the condition

!Lt -N(t'x'u'v'.) x(O) - 1 *(6.1)

Using the preceding transformation we obtain again a second mixed initial-boundary value

problem in functional for.

2. in a similar way we can also solve the following problems:

1. the Cauchy problem;

2-0 the first mixed problem with the boundary conditions:

X 0: u; - G(t~ufv) (i k +c4 1,... ,n)

v -F (t,u)

x It U Ur - Gr(t'u'v)p Cr- 1,...,h) (6.2)

v -F+(t~u)

and the corresponding first free boundary problem.

31. the problem with the interface x - 0 on the domain

R(8) - R ('5) U R_(d)

with

-23-



R(5) 1 (t,x)Io < t C 0,- )

+ =((t,x)Io < t ( 6 0 4 x (i

for the following system

C~'(t)( (I' (D) ( )(.:I± + A~t)(tX,(t) (t) 3y(±W au~t
at 'x'u 'v P.v -)

D t (t(),w±)(av~t + A4±)(t,,C W~± W.....3()

+4)(t,X,U~t,()~() W~ W3 1)

- ~ ~ ~ ~ t I( ±)tC,(±,V 'vA T
2 ()-±)txu±)~~

axa

i) i)on R t(8) respectively,
t-o 2 u -v -0,(6.4)

xos ~Git,u ~ i, i) k + 1,...,

U G (t,u (t,v C)) r1..h
r rr 1,. h

v - ) + f(t,u()

av ) Tx-.- g(t,& ~t (a > 0)

x II:1 convenient boundary conditions

with the following hypotheses:

+!~O0,,) (00,0 ~(,0,0,0)o < 0, A!+1) a-
r a 00000)>0

(-) (6.5)
r (00,01010) < 0, A'(0,00,00) > 0, r 1,..g a -h +1

-24-



4.. The problem with free interface x = x(t) can be similarly discussed, too. This

PA the conditions on x - x(t) are the following:

x = x(t) : u. )= 
G;{t,x,u .v(), s - k + 1,...,n

u - G r(txu (*,v) )o r- 1,...,h

V(+) . v
(
-) + T(t,x,n (6.6)

Ctv(+) W W( ) Dv) v
*(
)

-
t)

7 - z(t,x,U v +* txu *v

,(t.xu(*) , x(O) - 0 (6.7)

th the following hypotheses:

.x!+)(0oo00o0) < D(o,0,oo,o) -(o), )L+)C(0,0,0,0,0) 3 D(O) ,

A(-)(0,0,0,0,0) < D(O), A()(O,O,0,0,0) > D(O) (6.8)
r

(r - 1,...,k1  a " k + 1,...,ns r - 1,...,hy . - h + 1,...,n)

r the system of conservation laws, theme onditions (6.6), (6.7) and (6.6) (with

- k - 1) can be obtained from the corresponding Rankline-Rugoniot's conditions and the

,responding entropy ondition respectively.

Similarly, we can onsider the problem with the characteristic interface x - x(t),

-25-
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7. APPLICATION TO A CONJECTIVE GIVEN BY C. M. DAFERMOS.

The conjective given by C. M. Dafermos
t 31 

is that incomplete parabolic damping can

preserve the smoothness of smooth initial data but is incapable of smoothening rough

initial data. For the system of one-dimensional viscoelastic materials of the rate type,

he has verified that this conjecture is true.

Now, using the preceding results we can consider this conjecture in general case.

Indeed, the system with incomplete parabolic damping is a hyperbolic-parabolic coupled

system, since the problem with the free interface (or characteristic interface) x - x(t)

is well-posed (under the corresponding conditions of solvability), if the (rough) initial

data are piecewise smooth with a discontinuity at the origin x - 0, satisfying the

corresponding conditions of compatibility (i.e. corresponding Rankine-Hugoniot's conditions

for conservation laws) and the corresponding conditions of orientability (i.e.

corresponding entropy condition), then the local solution is also plecewise smooth with a

discontinuity on x -x(t), because the corresponding conditions of solvability can be

checked in many concrete cases. Thus, incomplete parabolic damping is incapable of

smoothening rough initial data, that is to say, the second part of this conjecture is

true. On the other hand, for smooth initial data, according to the preceeding results, the

solution remains smooth locally in time, so the first part of this conjecture is true at

least in a local sense. Am to the corresponding global existence theorem, we have to

discuss the concrete system and the problem seems yet open.
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